Механизм действия атф-синтетазы. Аэробный синтез атф Синтез атф происходит в

Расщепление органических веществ до более простых с выделением энергии и запасанием ее в АТФ - это энергетический обмен. Он включает три этапа - подготовительный, бескислородный и кислородный.

На подготовительном этапе энергия хоть и выделяется, но не запасается в АТФ, а рассеивается в виде тепла.

Бескислородный этап протекает в цитоплазме и приводит к расщеплению каждой молекулы глюкозы до двух молекул пировиноградной кислоты. При этом выделяется мало энергии, поэтому синтезируется только две молекулы АТФ.

Кислородный этап энергетического обмена протекает в митохондриях. Здесь пировиноградная кислота окисляется до углекислого газа и воды, выделяется много энергии и синтезируется около 36 молекул АТФ.

Биосинтез белка и синтез жиров относятся к пластическому обмену, когда из более простых соединений синтезируются более сложные. Такие процессы идут не с выделением энергии, а с ее потреблением. АТФ здесь играет роль поставщика энергии, распадаясь до АДФ и фосфорной кислоты.

В биологии аббревиатурой АТФ обозначают органическое вещество (мономер) аденозинтрифосфат (аденозинтрифосфорную кислоту). По химическому строению оно представляет собой нуклеозидтрифосфат.

В состав АТФ входят рибоза, аденин, три остатка фосфорной кислоты . Фосфаты последовательно связаны между собой. При этом два последних так называемой макроэргической связью, разрыв которой обеспечивает клетку большим количеством энергии.

Таким образом, АТФ выполняет в клетке энергетическую функцию .

Большая часть молекул АТФ образуется в митохондриях в реакциях клеточного дыхания. В клетках постоянно идет синтез и распад большого количество молекул аденозинтрифосфорной кислоты.

Отщепление фосфатных групп в основном происходит при участии фермента АТФ-азы и является реакцией гидролиза (присоединения воды):

АТФ + H2O = АДФ + H3PO4 + E,

где E - это выделяющаяся энергия, идущая на различные клеточные процессы (синтез других органических веществ, их транспорт, движение органоидов и клетки, терморегуляцию и др.).

По разным источникам количество выделяющейся энергии составляет от 30 до 60 кДж/моль.

АДФ - это аденозиндифосфат, который содержит уже два остатка фосфорной кислоты.

Чаще всего к нему потом снова присоединяется фосфат с образованием АТФ:

АДФ + H3PO4 = АТФ + H2O — E.

Эта реакция идет с поглощением энергии, накопление которой происходит в результате рада ферментативных реакций и процессов переноса ионов (в основном в матриксе и на внутренней мембране митохондрий). В конечном итоге энергия аккумулируется в присоединяемой к АДФ фосфатной группе.

Однако от АДФ может отщепиться еще один фосфат, связанный макроэргической связью, при это образуется АМФ (аденозинмонофосфата).

АМФ входит в состав РНК. Отсюда еще одна функция аденозинтрифосфорной кислоты – она служит источником сырья для синтеза ряда органических соединений.

Таким образом, особенности строения АТФ, функциональное использование только его в качестве источника энергии в метаболических процессах, дает возможность клеткам иметь единую и универсальную систему по приему химической энергии.

Связанная статья:Этапы энергетического обмена

Процесс фосфорилирования – реакция переноса фосфорильной группы от одного соединения к другому при участии фермента киназы. АТФ синтезируется путем окислительного и субстратного фосфорилирования.

Окислительное фосфорилирование – синтез АТФ путем присоединения к АДФ неорганического фосфата с использованием энергии, освободившейся при окислении биоорганических веществ.

АДФ + ~Ф → АТФ

Промежуточным продуктом углеводного метаболизма является фосфоенолпировиноградная кислота, которая передает АДФ фосфорильную группу с высокоэнергетической связью:

2.

Второй этап. После транспортировки мономеры (продукты распада биоорганических соединений) поступают в клетки, где подвергаются окислению.

В результате окисления топливных молекул (аминокислоты, глюкоза, жиры) образуется соединение ацетил-Ко-А. В течение данного этапа освобождается около 30% энергии пищевых веществ.

Третий этап – цикл Кребса – представляет собой замкнутую систему биохимических окислительно-восстановительных реакций. Цикл назван по имени английского биохимика Ханса Кребса, который постулировал и экспериментально подтвердил основные реакции аэробного окисления. За проведенные исследования Кребс получил Нобелевскую премию (1953).

Цикл имеет еще два названия:


II.


Данный процесс является реакцией дегидратации, катализируется ферментом аконитазой.

Данный процесс является реакцией гидратации, катализируется ферментом аконитазой.


IV.

Реакции 4 и 5 представляют собой окислительное декарбоксилирование, катализируются изоцитратдегидрогеназой, промежуточным продуктом реакций является оксалосукцинат.

Эта реакция также является реакцией окислительного декарбоксилирования, т.е. это вторая окислительно-восстановительная реакция:

α-Оксоглутарат + НАД + КоА Сукцинил-КоА + СО2 + НАДН



VII.

ГТФ + АДФ АТФ + ГДФ

X. Четвертая окислительно-восстановительная реакция:


Четыре реакции цикла являются окислительно-восстановительными, катализируются ферментами – дегидрогеназами, содержащими коферменты НАД, ФАД. Коферменты захватывают образующиеся Н+ и ē и передают их в дыхательную цепь (цепь биологического окисления). Элементы дыхательной цепи находятся на внутренней мембране митохондрий.

Дыхательная цепь – система окислительно-восстановительных реакций, в ходе которых происходит постепенный перенос Н+ и ē к О2, который поступает в организм в результате дыхания.

В дыхательной цепи происходит образование АТФ. Основные переносчики ē в цепи – железо- и медьсодержащие белки (цитохромы), кофермент Q (убихинон). В цепи находится 5 цитохромов (b1, с1, с, а, а3).

Простетической группой цитохромов b1, с1, с является железосодержащий гем. Механизм действия данных цитохромов состоит в том, что в их составе имеется атом железа с переменной валентностью, который может находиться как в окисленном, так и в восстановленном состоянии в результате переноса ē и Н+:

Цитохромы а и а3 образуют комплекс цитохромоксидазу, который является последним звеном дыхательной цепи.

Цитохромоксидаза содержит помимо железа медь с переменной валентностью. При транспортировке ē от цитохрома а3 к молекулярному О2 происходит процесс

Предыдущая9101112131415161718192021222324Следующая

ПОСМОТРЕТЬ ЕЩЕ:



Обратная связь

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение

Как цель узнает о ваших желаниях прежде, чем вы начнете действовать.

Как компании прогнозируют привычки и манипулируют ими

Целительная привычка

Как самому избавиться от обидчивости

Противоречивые взгляды на качества, присущие мужчинам

Тренинг уверенности в себе

Вкуснейший «Салат из свеклы с чесноком»

Натюрморт и его изобразительные возможности

Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.

Как научиться брать на себя ответственность

Зачем нужны границы в отношениях с детьми?

Световозвращающие элементы на детской одежде

Как победить свой возраст?

Восемь уникальных способов, которые помогут достичь долголетия

Классификация ожирения по ИМТ (ВОЗ)

Глава 3. Завет мужчины с женщиной

Оси и плоскости тела человека — Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.

Отёска стен и прирубка косяков — Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.

Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) — В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Пути синтеза АТФ в организме

Процесс фосфорилирования – реакция переноса фосфорильной группы от одного соединения к другому при участии фермента киназы.

АТФ синтезируется путем окислительного и субстратного фосфорилирования. Окислительное фосфорилирование – синтез АТФ путем присоединения к АДФ неорганического фосфата с использованием энергии, освободившейся при окислении биоорганических веществ.

АДФ + ~Ф → АТФ

Субстратное фосфорилирование – непосредственная передача фосфорильной группы с макроэргической связью АДФ для синтеза АТФ.

Примеры субстратного фосфорилирования:

1. Промежуточным продуктом углеводного метаболизма является фосфоенолпировиноградная кислота, которая передает АДФ фосфорильную группу с высокоэнергетической связью:


Взаимодействие промежуточного продукта цикла Кребса – макроэргического сукцинил-Ко-А – с АДФ с образованием одной молекулы АТФ.

Рассмотрим три основных этапа освобождения энергии и синтеза АТФ в организме.

Первый этап (подготовительный) включает переваривание и всасывание.

На этом этапе освобождается 0,1% энергии пищевых соединений.

Второй этап. После транспортировки мономеры (продукты распада биоорганических соединений) поступают в клетки, где подвергаются окислению. В результате окисления топливных молекул (аминокислоты, глюкоза, жиры) образуется соединение ацетил-Ко-А. В течение данного этапа освобождается около 30% энергии пищевых веществ.

Третий этап – цикл Кребса – представляет собой замкнутую систему биохимических окислительно-восстановительных реакций.

Цикл назван по имени английского биохимика Ханса Кребса, который постулировал и экспериментально подтвердил основные реакции аэробного окисления. За проведенные исследования Кребс получил Нобелевскую премию (1953). Цикл имеет еще два названия:

— цикл трикарбоновых кислот, так как он включает реакции превращения трикарбоновых кислот (кислот, содержащих три карбоксильные группы);

— цикл лимонной кислоты, так как первой реакцией цикла является образование лимонной кислоты.

Цикл Кребса включает 10 реакций, четыре из которых окислительно-восстановительные.

В ходе реакций освобождается 70% энергии.

Чрезвычайно велика биологическая роль этого цикла, поскольку это общий конечный пункт окислительного распада всех основных пищевых продуктов.

Это главный механизм окисления в клетке, образно его называют метаболическим «котлом». В процессе окисления топливных молекул (углеводов, аминокислот, жирных кислот происходит обеспечение организма энергией в виде АТФ. Топливные молекулы вступают в цикл Кребса после превращения в ацетил-Ко-А.

Кроме того, цикл трикарбоновых кислот поставляет промежуточные продукты для процессов биосинтеза. Этот цикл происходит в матриксе митохондрий.

Рассмотрим реакции цикла Кребса:

Цикл начинается с конденсации четырехуглеродного компонента оксалоацетата и двухуглеродного компонента ацетил-Ко-А.

Реакция катализируется цитратсинтазой и представляет собой альдольную конденсацию с последующим гидролизом. Промежуточным продуктом является цитрил-Ко-А, который гидролизуется на цитрат и КоА:

Это первая окислительно-восстановительная реакция.

Реакция катализируется α-оксоглутаратдегидрогеназным комплексом, состоящим из трех ферментов:

В сукциниле имеется связь, богатая энергией.

Расщепление тиоэфирной связи сукцинил-КоА сопряжено с фосфорилированием гуанозиндифосфата (ГДФ):

Сукцинил-КоА + ~ Ф +ГДФ Сукцинат + ГТФ +КоА

Фосфорильная группа ГТФ легко переносится на АДФ с образованием АТФ:

ГТФ + АДФ АТФ + ГДФ

Это единственная реакция цикла, являющаяся реакцией субстратного фосфорилирования.

Это третья окислительно-восстановительная реакция:

В цикле Кребса образуются углекислый газ, протоны, электроны.

Четыре реакции цикла являются окислительно-восстановительными, катализируются ферментами – дегидрогеназами, содержащими коферменты НАД, ФАД. Коферменты захватывают образующиеся Н+ и ē и передают их в дыхательную цепь (цепь биологического окисления).

Элементы дыхательной цепи находятся на внутренней мембране митохондрий.

Дыхательная цепь – система окислительно-восстановительных реакций, в ходе которых происходит постепенный перенос Н+ и ē к О2, который поступает в организм в результате дыхания. В дыхательной цепи происходит образование АТФ.

Основные переносчики ē в цепи – железо- и медьсодержащие белки (цитохромы), кофермент Q (убихинон). В цепи находится 5 цитохромов (b1, с1, с, а, а3).

Простетической группой цитохромов b1, с1, с является железосодержащий гем.

Механизм действия данных цитохромов состоит в том, что в их составе имеется атом железа с переменной валентностью, который может находиться как в окисленном, так и в восстановленном состоянии в результате переноса ē и Н+:

Итоговая реакция, которая происходит на цитохромоксидазе, имеет вид

Энергетический баланс цикла Кребса и дыхательной цепи – 24 молекулы АТФ.

Схема цикла Кребса

Энергия, высвобождающаяся при распаде органических веществ, не сразу используется клеткой, а запасается в форме высокоэнергетических соединений, как правило, в форме аденозинтрифосфорной кислоты (АТФ) .

АТФ относят к мононуклеотидам. Она состоит из аденина, рибозы и трех остатков фосфорной кислоты, соединяющихся между собой макроэргическими связями.

В этих связях запасена энергия, которая высвобождается при их разрыве:

АТФ + H2O → АДФ + H3PO4 + Q1,
АДФ + H2O → АМФ + H3PO4 + Q2,
АМФ + H2O → аденин + рибоза + H3PO4 + Q3,

где АТФ - аденозинтрифосфорная кислота; АДФ - аценозиндифосфорная кислота; АМФ - аденозинмонофосфорная кислота; Q1 = Q2 = 30,6 кДж; Q3 = 13,8 кДж.

Запас АТФ в клетке ограничен и пополняется благодаря процессу фосфорилирования - присоединения остатка фосфорной кислоты к АДФ (АДФ + Ф → АТФ).

Он происходит с разной интенсивностью при дыхании, брожении и фотосинтезе. АТФ обновляется чрезвычайно быстро (у человека продолжительность жизни одной молекулы АТФ менее 1 мин).

Энергия, накопленная в молекулах АТФ, используется организмом в анаболических реакциях (реакциях биосинтеза).

Молекула АТФ служит универсальным хранителем и переносчиком энергии для всех живых существ.

Анатомия и физиология центральной нервной системы

4. Обмен жиров, их биологическая роль, теплоемкость, участие в обмене веществ.

Энергетическая стоимость жиров. Жировые отложения

Жиры — органические соединения, входящие в состав животных и растительных тканей и состоящие в основном из триглицеридов (сложных эфиров глицерина и различных жирных кислот). Помимо триглицеридов, в состав жиров входят вещества…

Влияние органических удобрений на микробиоту почвы

2.

Роль микроорганизмов в круговороте веществ в природе

Химическая деятельность микроорганизмов проявляется в непрерывном круговороте азота, фосфора, серы, углерода и других веществ. При самом активном, широком участии микроорганизмов в природе, главным образом в почве и гидросфере…

Гормон окситоцин

1.

Химическая структура и синтез окситоцина

Окситоцин не является собственным гормоном нейрогипофиза, а лишь накапливается в нем, перемещаясь по аксонам гипоталамо- гипофизарного пучка из ядер переднего гипоталамуса — супраоптического и паравентрикулярного…

3.

Реакционная способность веществ, анализ и синтез

Естествознание на молекулярном уровне

3. Реакционная способность веществ, анализ и синтез

Зависимость уровня тиреотропного и тиреоидных гормонов от заболеваний щитовидной железы

2.5 Влияние веществ на синтез тиреоидных гормонов

В настоящее время считается, что влияния на синтез различных веществ имеет смешанный характер.

Этот тезис доказывается в статье Р.В.

Кубасова, Е.Д…

Микроорганизмы в круговороте веществ в природе

Роль микроорганизмов в круговороте веществ в природе

С помощью микроорганизмов органические соединения растительного и животного происхождения минерализуются до углерода, азота, серы, фосфора, железа и др.

Круговорот углерода. В круговороте углерода активное участие принимают растения…

Микроорганизмы, выделенные из различных природных жиров

1.1 Структура жировых веществ

Жиры являются веществами нелетучими и при нагревании до 250-300°С разлагаются с образованием летучих веществ, выделяющихся в виде паров, газов и дыма.

Жиры плохие проводники тепла…

Глава 4. Печень, ее роль в обмене веществ

Обмен белков. Обмен жиров. Обмен углеводов. Печень, ее роль в обмене веществ

4.3 Роль печени в обмене веществ

Рассматривая обмен белков, жиров и углеводов мы не раз затрагивали печень.

Печень является важнейшим органом, осуществляющим синтез белков. В ней образуется весь альбумин крови, основная масса факторов свертывания…

Основные принципы питания

7. Роль минеральных веществ в питании человека

В зависимости от количества минеральных веществ в организме человека и в пищевых продуктах их подразделяют на макро- и микроэлементы.

К первым относятся кальций, калий, магний, натрий, фосфор, хлор, сера…

Роль микроорганизмов в круговороте химических элементов в природе

4. Роль микроорганизмов в круговороте серы в природе, их значение превращения веществ и практическое использование

Круговорот серы осуществляется в результате жизнедеятельности бактерий, окисляющих или восстанавливающих ее.

Процессы восстановления серы происходят несколькими путями. Под влиянием гнилостных бактерий — клостридий…

4.2 Каротиноиды. Их структура, функции и физиологическая роль

Каротиноиды — жирорастворимые пигменты желтого, оранжевого, красного цвета — присутствуют в хлоропластах всех растений. Они входят также в состав хромопластов в незеленых частях растений, например в корнеплодах моркови…

Фотосинтез как основа энергетики биосферы

4.3 Фикобилины.

Их структура, функции и физиологическая роль

Синезеленые водоросли (цианобактерии), красные морские водоросли и некоторые морские криптомонады помимо хлорофилла а и каротиноидов содержат пигменты фикобилины…

Энергетический метаболизм микроорганизмов

1.

Общие понятия об обмене веществ и энергии

Все живые организмы могут использовать только химически связанную энергию. Каждое вещество обладает определенным запасом потенциальной энергии. Главные материальные носители ее химические связи…

Аденозинтрифосфорная кислота-АТФ - обязательный энергетический компонент любой живой клетки. АТФ также нуклеотид, состоящий из азотистого основания аденина, сахара рибозы и трех остатков молекулы фосфорной кислоты. Это неустойчивая структура. В обменных процессах от нее последовательно отщепляются остатки фосфорной кислоты путем разрыва богатой энергией, но непрочной связи между вторым и третьим остатками фосфорной кислоты. Отрыв одной молекулы фосфорной кислоты сопровождается выделением около 40 кДж энергии. В этом случае АТФ переходит в аденозиндифосфорную кислоту (АДФ), а при дальнейшем отщеплении остатка фосфорной кислоты от АДФ образуется аденозинмонофосфорная кислота (АМФ).

Схема строения АТФ и превращения ее в АДФ (Т.А. Козлова, В.С. Кучменко. Биология в таблицах. М.,2000)

Следовательно, АТФ - своеобразный аккумулятор энергии в клетке, который "разряжается" при ее расщеплении. Распад АТФ происходит в процессе реакций синтеза белков, жиров, углеводов и любых других жизненных функций клеток. Эти реакции идут с поглощением энергии, которая извлекается в ходе расщепления веществ.

АТФ синтезируется в митохондриях в несколько этапов. Первый из них - подготовительный - протекает ступенчато, с вовлечением на каждой ступени специфических ферментов. При этом сложные органические соединения расщепляются до мономеров: белки - до аминокислот, углеводы - до глюкозы, нуклеиновые кислоты - до нуклеотидов и т. д. Разрыв связей в этих веществах сопровождается выделением небольшого количества энергии. Образовавшиеся мономеры под действием других ферментов могут претерпеть дальнейший распад с образованием более простых веществ вплоть до диоксида углерода и воды.

Схема Синтез АТФ в мвтохондрии клетки

ПОЯСНЕНИЯ К СХЕМЕ ПРЕВРАЩЕНИЕ ВЕЩЕСТВ И ЭНЕРГИИ В ПРОЦЕССЕ ДИССИМИЛЯЦИИ

I этап - подготовительный: сложные органические вещества под действием пищеварительных ферментов распадаются на простые, при этом выделяется только тепловая энергия.
Белки ->аминокислоты
Жиры-> глицерин и жирные кислоты
Крахмал ->глюкоза

II этап-гликолиз (бескислородный): осуществляется в гиалоплазме, с мембранами не связан; в нем участвуют ферменты; расщеплению подвергается глюкоза:

У дрожжевых грибов молекула глюкозы без участия кислорода превращается в этиловый спирт и диоксид углерода (спиртовое брожение):

У других микроорганизмов гликолиз может завершаться образованием ацетона, уксусной кислоты и т, д. Во всех случаях распад одной молекулы глюкозы сопровождается образованием двух молекул АТФ. В ходе бескислородного расщепления глюкозы в виде химической связи в молекуле АТФ сохраняется 40% анергии, а остальная рассеивается в виде теплоты.

III этап-гидролиз (кислородный): осуществляется в митохондриях, связан с матриксом митохондрий и внутренней мембраной, в нем участвуют ферменты, расщеплению подвергается молочная кислота: СзН6Оз+ЗН20 -->3СО2+ 12Н. С02 (диоксид углерода) выделяется из митохондрий в окружающую среду. Атом водорода включается в цепь реакций, конечный результат которых - синтез АТФ. Эти реакции идут в такой последовательности:

1. Атом водорода Н с помощью ферментов-переносчиков поступает во внутреннюю мембрану митохондрий, образующую кристы, где он окисляется: Н-е-->H+

2. Протон водорода H+ (катион) выносится переносчиками на наружную поверхность мембраны крист. Для протонов эта мембрана непроницаема, поэтому они накапливаются в межмембранном пространстве, образуя протонный резервуар.

3. Электроны водорода e переносятся на внутреннюю поверхность мембраны крист и тут же присоединяются к кислороду с помощью фермента оксидазы, образуя отрицательно заряженный активный кислород (анион): O2 + е-->O2-

4. Катионы и анионы по обе стороны мембраны создают разноименно заряженное электрическое поле, и когда разность потенциалов достигнет 200 мВ, начинает действовать протонный канал. Он возникает в молекулах ферментов АТФ-синтетаз, которые встроены во внутреннюю мембрану, образующую кристы.

5. Через протонный канал протоны водородаH+ устремляются внутрь митохондрий, создавая высокий уровень энергии, большая часть которой идет на синтез АТФ из АДФ и Ф (АДФ+Ф-->АТФ), а протоны H+ взаимодействуют с активным кислородом, образуя воду и молекулярный 02:
(4Н++202- -->2Н20+02)

Таким образом, О2, поступающий в митохондрии в процессе дыхания организма, необходим для присоединения протонов водорода Н. При его отсутствии весь процесс в митохондриях прекращается, так как электронно-транспортная цепь перестает функционировать. Общая реакция III этапа:

(2СзНбОз + 6Oз + 36АДФ + 36Ф ---> 6С02 + 36АТФ + +42Н20)

В результате расщепления одной молекулы глюкозы образуются 38 молекул АТФ: на II этапе - 2 АТФ и на III этапе - 36 АТФ. Образовавшиеся молекулы АТФ выходят за пределы митохондрии и участвуют во всех процессах клетки, где необходима энергия. Расщепляясь, АТФ отдает энергию (одна фосфатная связь заключает 40 кДж) и в виде АДФ и Ф (фосфата) возвращается в митохондрии.

В биологии АТФ - это источник энергии и основа жизни. АТФ - аденозинтрифосфат - участвует в процессах метаболизма и регулирует биохимические реакции в организме.

Что это?

Понять, что такое АТФ, поможет химия. Химическая формула молекулы АТФ - C10H16N5O13P3. Запомнить полное название несложно, если разбить его на составные части. Аденозинтрифосфат или аденозинтрифосфорная кислота - нуклеотид, состоящий из трёх частей:

  • аденина - пуринового азотистого основания;
  • рибозы - моносахарида, относящегося к пентозам;
  • трёх остатков фосфорной кислоты.

Рис. 1. Строение молекулы АТФ.

Более подробная расшифровка АТФ представлена в таблице.

АТФ впервые обнаружили гарвардские биохимики Суббарао, Ломан, Фиске в 1929 году. В 1941 году немецкий биохимик Фриц Липман установил, что АТФ является источником энергии живого организма.

Образование энергии

Фосфатные группы соединены между собой высокоэнергетическими связями, которые легко разрушаются. При гидролизе (взаимодействии с водой) связи фосфатной группы распадаются, высвобождая большое количество энергии, а АТФ превращается в АДФ (аденозиндифосфорную кислоту).

Условно химическая реакция выглядит следующим образом:

ТОП-4 статьи которые читают вместе с этой

АТФ + Н2О → АДФ + Н3РО4 + энергия

Рис. 2. Гидролиз АТФ.

Часть высвободившейся энергии (около 40 кДж/моль) участвует в анаболизме (ассимиляции, пластическом обмене), часть - рассеивается в виде тепла для поддержания температуры тела. При дальнейшем гидролизе АДФ отщепляется ещё одна фосфатная группа с высвобождением энергии и образованием АМФ (аденозин-монофосфата). АМФ гидролизу не подвергается.

Синтез АТФ

АТФ располагается в цитоплазме, ядре, хлоропластах, в митохондриях. Синтез АТФ в животной клетке происходит в митохондриях, а в растительной - в митохондриях и хлоропластах.

АТФ образуется из АДФ и фосфата с затратой энергии. Такой процесс называется фосфорилированием:

АДФ + Н3РО4 + энергия → АТФ + Н2О

Рис. 3. Образование АТФ из АДФ.

В растительных клетках фосфорилирование происходит при фотосинтезе и называется фотофосфорилированием. У животных процесс протекает при дыхании и называется окислительным фосфорилированием.

В животных клетках синтез АТФ происходит в процессе катаболизма (диссимиляции, энергетического обмена) при расщеплении белков, жиров, углеводов.

Функции

Из определения АТФ понятно, что эта молекула способна давать энергию. Помимо энергетической аденозинтрифосфорная кислота выполняет другие функции:

  • является материалом для синтеза нуклеиновых кислот;
  • является частью ферментов и регулирует химические процессы, ускоряя или замедляя их протекание;
  • является медиатором - передаёт сигнал синапсам (местам контакта двух клеточных мембран).

Для нас сейчас важно, зато молекула аденозинтрифосфорной кислоты содержит так называемую макроэргическую связь. Реакция синтеза представлена на схеме.

АДФ+Ф ==> АТФ +H 2 O

Из аденозиндифосфата и фосфата получается АТФ, при этом образуется так называемая макроэргическая связь, и на ее образование затрачивается 30,6 кДж/моль (7,3 ккал/моль). АТФ обеспечивает энергией большинство происходящих в клетке процессов, так как при гидролизе макроэргической связи запасенная в ней энергия освобождается.

Как же синтезируется эта молекула, то есть, как образуется макроэргическая связь между фосфатами? Это было одно время загадкой. Существовало предположение о том, что есть какое-то вещество Х, химический посредник, осуществляет связь между процессами, дающими энергию, то есть окислением питательных веществ до СО2 и Н2О, и каким -то образом энергия окисления (в своем роде медленное "горение" внутри организма) переходит в энергию макроэргической связи в молекуле АТФ. Это предположение о наличии химического посредника, которого никто найти не мог, называлось гипотезой химического сопряжения (рис. 6).

Но в 1961 г. английский ученый Питер Митчелл предложил другое объяснение - хемиосмотическую гипотезу (подробнее мы о ней будем говорить позже), которая заключается в том, что вода, которая образуется в процессе окисления, образуется не в виде молекулы воды, а виде протона H+ и иона гидроксила OH - . Энергия, получаемая при окислении, идет на то, чтобы продукты реакции - протон и гидроксил - разделить в пространстве. Протон выбрасывается из митохондрий через внутреннюю мембрану в межмембранное пространство (сам по себе протон не может проникнуть через мембрану митохондрии, эта мембрана непроницаема для заряженных частиц), и гидроксогруппы, которая остается внутри митохондрии.

В результате возникает разница концентраций ионов водорода (∆рН - то есть кислотности среды) и разница потенциала: положительные заряды снаружи митохондриальной мембраны, а отрицательный внутри. Напомним, что у митохондрий 2 мембраны, причем внешняя в энергетических процессах такой важной роли, как внутренняя, не играет. То есть энергия, полученная при окислении, запасена в виде электрохимической энергии. Электрический потенциал на мембране митохондрий достигает 200 милливольт, а толщина мембраны не превышает 10 нм.

Питер Митчелл первый высказал предположение о том, что химические реакции в клетке пространственно упорядочены, и продукты реакции распределяются асимметрично: протон в одну сторону, гидроксил в другую. За счет этого появляется электрохимический потенциал на мембране (обозначается Δμн). Он состоит из химической (∆рН - разница в концентрации протонов) и электрической (Δφ - разница в величине заряда) компоненты Δμн=∆рН + Δφ. Электрохимический потенциал на мембране митохондрий - универсальная форма запасания энергии клеткой.

Протоны могут перекачиваться через мембрану и при фотосинтезе в хлоропластах или в клетках фотосинтезирующих бактерий (Рис. 8).

На рисунке представлена довольно простая система бактериального фотосинтеза, сопряженного с синтезом АТФ на примере галобактерий. Галобактерии живут в Мертвом море. Море настолько соленое, что соль выпадает в осадок, но в таких экстремальных условиях галобактерии прекрасно себя чувствуют. Галобактерии используют фотосинтез для получения энергии. Белок бактериородопсин под действием света выкачивает протоны изнутри бактериальной клетки наружу, и на мембране снаружи избыток протонов, и, соответственно, образуется положительный заряд. То есть в данном случае электрохимический потенциал на мембране бактерии возникает не за счет окисления веществ в процессе дыхания, а за счет работы, связанной со световой энергией.

Если протон "падает" сквозь мембрану внутрь митохондрии, при этом его потенциальная энергия уменьшается, так как он "падает" в электрическом поле от положительного заряда к отрицательному, и вдобавок по градиенту концентрации. Эта энергия используется для синтеза АТФ. И далее пойдет речь о том, как это происходит.

Синтезом АТФ занимается молекулярная машина, которая называется АТФ-синтаза. Она состоит из двух частей. Первая погружена в мембрану называется F 0 (см. рисунок). Она представляет собой протонный канал, то есть это дыра в мембране, по которой протон может попасть внутрь митохондрии, но попадает он внутрь с потерей энергии, которую улавливает вторая часть молекулярной машины, которая называется F 1 . Эта часть АТФ-синтазы торчит внутрь митохондрии и использует энергию "падающих" через F 0 протонов для того, чтобы аденозиндифосфат соединился с фосфатом посредством макроэргической связи и образовал молекулу АТФ.

Рассмотрим, как АТФ-синтаза синтезирует АТФ. Оказывается, что прежде всего совершается работа механическая, так как для осуществления синтеза АТФ в АТФ-синтазе крутится белковая структура. Как устроена АТФ-синтаза?


Она состоит из двух частей - статора (на рисунке 9 помечено синим цветом), и ротора (обозначен красным). Статор состоит из трех альфа субъединиц и трех бета субъединиц - они занимаются химической частью работы: синтезом АТФ из АДФ и фосфата. В собранном состоянии все вместе эти субъединицы по форме напоминают слега приплюснутый шар 8 нм в высоту и 10 нм в диаметре.

К ним примыкает дельта субъединица, и все вместе эта система образует F1 субъединицу молекулярной машины. Здесь же есть опора, которая «якорит» всю систему в мембране. Как известно, мембрана сделана из фосфолипидов (на рисунке показаны желтым). Гидрофильные "головки" фосфолипидов обращены в водную поверхность, а гидрофобные "хвосты" погружены внутрь мембраны, и именно они препятствуют перемещению заряженных частиц через мембрану. Вращающаяся часть машины, ротор, состоит из гамма и эпсилон субъединиц. Эта конструкция погружена в структуру, сделанную из одинаковых белков, они обозначаются буквой с. Статор держится в мембране, а ротор крутится. И энергия протона используется на то, чтобы прокрутить ротор этой машины.

Молекулярная машина работает в обе стороны (так же как и катализаторы, которые проводят реакцию как в прямую, так и в обратную стороны). Если течет протонный ток с наружной мембраны внутрь, то синтезируется АТФ; если же протонного потенциала нет, но подать с внутренней стороны АТФ, то машина начнет «выкачивать» протоны, создавая протонный потенциал. При этом ротор также вращается.

Для того, чтобы доказать, что в АТФ синтазе вращается часть машины, F1 фрагмент перевернули, «пришили» к неподвижной подложке, а к гамма-субъединице навесили искусственным образом нить актина (длинный белок, который можно было увидеть в микроскоп, так как он был мечен флуоресцентной меткой). Затем подали к этой системе энергию в виде АТФ, и оказалось, что при наличии АТФ гамма субъединица начала крутиться. Все это сняли на пленку. Было видно, как крутится флуоресцентная метка на актиновом хвостике, и было показано, что действительно происходит вращение во время работы этой молекулярной машины (рис. 10).

Теперь разберем, как же крутится этот ротор; как работает электромотор в мембране клеток, как у бактерий, так и у митохондрий высших организмов. Если вы вспомните временную ось возникновения жизни, то увидите, что возникнуть этот мотор должен был более трех миллиардов лет назад.

Как же используется протонный ток, чтобы крутить мотор? Оказалось, что в статоре имеется протонный канал, т.е. такой белок, который образует проход для протона. Но этот канал не сплошной. Если бы был канал, который пронизывал всю мембрану насквозь, то из-за разницы потенциалов все протоны потекли бы внутрь митохондрии, и произошла бы деэнергетизация мембраны, т.е. она бы разрядилась. Но канал устроен очень хитро. Он состоит из двух половинок (полу-каналов), которые, к тому же, смещены одна относительно другой (рис. 1).

Структура этой машины такова, что протон проваливается через полуканал с наружной стороны митохондриальной мембраны, но попасть внутрь митохондрии он не может. Сваливается протон на подставленную ему аминокислоту ротора и эту аминокислоту протонирует, то есть на аминокислоте появляется дополнительный положительный заряд. Затем, когда протонированная аминокислота на вращающемся роторе доедет до следующей половинки канала, ведущей уже внутрь митохондрии (а внутри протонов мало и, кроме того, там протон поджидают отрицательно заряженные ионы), то протон наконец "падает" внутрь и аминокислота освобождается от положительного заряда. Заряды в роторе и статоре расположены таким образом, что протонирование - депротонирование приводит к повороту машины. Таким образом, протон в два приема проваливается внутрь митохондрии, и за счет этого мотор проворачивается.

За объяснение ферментативного механизма, лежащего в основе синтеза АТФ, два исследователя получили Нобелевскую премию: Пол Д. Бойер, США и Джон Э. Уолкер, Великобритания (Нобелевская премия 1997 года).

Было рассказано, как мотор крутится, но не было объяснено, почему синтезируется АТФ. Сейчас подробно мы на этом останавливаться не будем, но вкратце, объяснить это можно следующим образом. Представим АТФ в таком виде: АТФ=АДФ~Ф. Собственно, почему при разрыве этой связи выделяется большое количество энергии? При разрыве образуется отрицательно заряженный фосфат, который гидратируется (покрывается «шубой» из молекул воды). Как вы помните, вода - это диполь (кислород имеет частично отрицательный заряд, а два водорода - положительный). И за счет гидратирования эта энергия и получается. Но если синтез АТФ идет в той среде, где воды нет, т.е. в гидрофобной среде, то макроэргической эта реакция не является. Показано, что когда происходит образование ковалентной связи между фосфатными группами молекул АДФ и Ф, ферменту практически не требуется энергии. Реакции синтеза и гидролиза ATP в каталитическом центре фермента активно идут при отсутствии внешнего источника энергии. Условия, в которых находятся молекулы АДФ и Ф в каталитическом центре, существенно отличаются от условий протекания реакции в водной среде, благодаря чему образование молекулы АТФ в активном центре фермента может происходить энергетически "бесплатно". Энергия "падающих" протонов тратится потом на то, чтобы «выпихнуть» вон АТФ, отцепить его от каталитической субъединицы.

Таким образом, за счет электрохимического потенциала на внутренней мембране митохондрий внутри клетки или митохондрий совершается механическая работа, сопряженная с химическим синтезом.

На рисунке виден срез митохондрии (рис. 12). Внутри содержится матрикс и выросты (складки) - кристы, на которых и расположена АТФ-синтаза. Зачем нужны складки? Чтобы увеличить площадь поверхности. Количество складок внутри митохондрий зависит от того, насколько интенсивно ей приходится работать, сколько энергии нужно клетке. Митохондрии в клетках печени имеют гораздо меньше крист, чем, например, в клетках сердца.


В хлоропластах происходит точно такой же процесс синтеза АТФ, также работает АТФ-синтаза, как и в митохондриях, но источником протонного потенциала является уловленная энергия света. Там тоже есть складки, они называются тилакоидами. Только в хлоропластах все как бы вывернуто наизнанку. То есть протоны за счет энергии света накапливаются снаружи этих образований.

ripe_berry ) схематично показывается, как работает АТФ-синтаза, сложное молекулярное электромеханическое устройство, приводимое в действие разностью электрохимического потенциала по разные стороны мембраны митохондрии и использующее эту энергию для синтеза молекулы аденозин-5’-трифосфата (АТФ). Реакция синтеза АТФ из аденозиндифосдата (АДФ) и иона фосфата эндотермическая, то есть забирает энергию из внешнего источника.

АДФ + PO 4 3- + Е ⇔ АТФ

АТФ используется клетками как источник энергии во многих клеточных процессах. Та же самая реакция может идти и в обратном направлении, когда АТФ расщепляется на специальном белке-катализаторе обратно на АДФ и фосфат с выделением энергии.

АТФ-синтаза состоит из двух механизмов. Первый, F0, это электромотор, находящийся в клеточной мембране и превращающий энергию, запасенную в разности потенциалов по разные стороны клеточной мембраны. Липидная мембрана служит изолятором в этой электрохимической «батарейке»: через нее ионы не проходят. Разность потенциалов создается другими сложными механизмами в конечном счете из «сжигания» сахара в кислороде. Ион водорода H + втягивается во «впускной коллектор» и присоединяется к белковой дольке ротора. Ротор поворачивается за счет электростатических сил, а долька, достигшая «выхлопного коллектора» мотора, освобождается от иона каталитическим белком, и этот ион проваливается внутрь клетки, опять же за счет электростатических сил, стремящихся выровнять потенциал по обе стороны мембраны. Таким образом, электроэнергия сначала превращается в механическую энергию вращения молекулярного вала, присоединенного к ротору и уходящего вглубь клетки, к механизму синтеза, F1.

Механико-химический реактор F1 состоит из трех белковых долек, каждая из которых состоит из двух белковых молекул (их называют α-F1 и β-F1, а вал сделан из одной молекулы, обозначаемой γ-F1). Каждая долька может принимать две устойчивые пространственные конфигурации за счет взаимного межатомного притяжения - как обычный настенный выключатель оказывается в двух устойчивых положениях, хотя промежуточные положения неустойчивы. Одно из этих положений, однако, имеет более высокую энергию. Молекулы сдвигаются в конфигурацию с более высокой энергией за счет асимметрии вращающегося γ-вала, как будто бы «кулачком» на нем.

Когда к αβ-комплексу присоединяется АДФ и ион фосфата, равновесие нарушается, и молекула, как пружинка с запасенной энергией, перепрыгивает в состояние с меньшей энергией, а запасенная энергия тратится на сближение АДФ и фосфатного иона, в результате чего те соединяются в молекулу АТФ, в конечном счете уносящую этот запас энергии.

Вращение механизма можно увидеть в микроскоп, если присоединить к ротору в F0 специально изготовленную длинную светящуюся (флюоресцирующую) молекулу-стержень. В самом конце фильма можно увидеть реконструкцию этого потрясающего опыта Масасуке Ёсиды и врезку с данными, показывающими вращение ротора.

Интересно, что на нижнем конце ротора имеется еще один белок, δ-F1, который тоже умеет изменять конфигурацию в присутствии АДФ, исходного реагента для реакции. Когда АДФ вокруг реактора оказывается мало, этот белок меняет форму и заклинивает ротор, чтобы не расходовать электрохимическую энергию вхолостую, поскольку продвижение ионов H + через остановленный ротор невозможно. Да, и об экономии клеточной электроэнергии природа тоже «подумала»!

Больше информации о работе АТФ-синазы можно найти в